

Aim of talk

Outline memory model related differences between programming in:
* “modelling languages” like pseudocode and Promela, and
* “real languages” like Java.

The talk is both Java specific and not Java specific:
* Java used as an example of a language with a “weak memory model”,
e but at least C/C++ similar

What to remember from this talk

In “modelling languages”, synchronization is used for:
* atomicity

In “real languages”, synchronization is used for:
e atomicity, and
* visibility

Outline

* What are memory models?
* Why weak memory models?

* Something about the Java memory model (as an example of a weak
memory model)

* Programming in the Java memory model

Outline

 What are memory models?
* Why weak memory models?

* Something about the Java memory model (as an example of a weak
memory model)

* Programming in the Java memory model

What are memory models?

* Memory model part of language semantics (what programs mean,
i.e., how programs behave)

 Different memory models exist:

* In pseudocode, sequential consistency (SC) often assumed -- one of the
“strongest” memory models

* Java, instead, offers the Java memory model (JMM) -- one example of a
"weak” memory model

OK... but what is a memory model?

* In one sentence: Semantics of shared variables (and synchronization)

* Consider the question: What values are variable reads allowed to
return?

. 277

Reading variables: Sequential programming

int x =

int y =

X = 1; What value can this this read of y
y = 1; return?

print(y

print(x); Will obviously read 1 here! We

always get the !

Reading variables: Concurrent programming

bool done = false; int r = 0; // r is short for result

green_thread {
r = 666;

done = true;

blue thread {
if (done)
print(re

} What value can this this read of r return?

Assuming sequential consistency:
Just consider all possible interleavings!

Reading variables: Manual reasoning

bool done = false; int r = 9;

Interleaving 1: Interleaving 2: Interleaving 3:
done? r = 666; r = 666;
r = 666; done? done = true;
done = true; done = true; done?

print(r);
Output: Output: Output:

- - 666

Reading variables: Machine reasoning

> spin -search read-vars.pml

> cat read-vars.pml

bool done = false; int r = 0; Spin is 3 tool that can -- 6 December 2019)

reason about Promela Order Reduction
active proctype green_proc() { programs automatically

Search for:

r = 666_; done = tr‘ue; never claim - (none specified)
assertion violations +
} cycle checks - (disabled by -DSAFETY)
invalid end states +

active proctype blue proc() {

State-vector 28 byte, depth reached 5, errors: 0

l-F 11 states, stored
done -> assert(r == 666); 2 states, matched The important part is
. else 1: :Zz:zzt::;(= stored+match¥ here: O errorS!
fi The same program, now hash conflicts: o (resolved)
} written in Promela

In Promela we have SC!

What happens with the Java memory model?

Demo OutOfOrderTest.java

Reading variables: Sequential consistency (SC)

bool done = false; int r = @; Some visibility guarantees in SC:

green_thread { o
* "Program order” always maintained

r = 666; :
’ * In particular, r = 666 always before done
done = true; = truein any interleaving

* No “stale” values: Always see the latest

value written to any variable
blue_thread {

if (done
() e But the above guarantees not provided

print(r); by all weak memory models (e.g. IMM)!

Reading variables: Weak memory models

bool done = false; int r = 0;

”Interleaving-based semantics” in some
sense the "obvious” semantics for
concurrency

Why make things more difficult? Why
give up program order and other nice

things?
blue thread {
if (done)
: Because: SC costs too much
print(r);

Outline Btw, the conclusion of the
previous section:

You must understand the
* What are memory models? memory model you are using to

understand your programs

* Why weak memory models?

* Something about the Java memory model (as an example of a weak
memory model)

* Programming in the Java memory model

SC cost 1: Prohibits (too many) compiler
optimizations

* Aaaaah!!l Messiness! Real-world things! In pseudocode we do not
have to consider ugliness such as compiler “details” etc.

* Example: For some compiler optimizations we want to reorder writes
to variables. (For whatever reason: Might improve register allocation
or anything.)

SC cost 1: Prohibits (too many) compiler
optimizations

e E.g., the transformation to the right Original program:
“semantics preserving” in

: o X=1;
sequential setting if we only
consider final state of program y=2;
Z=X+YV;

* Not equivalent if we can inspect
program under execution, which Transformed program: Write order
we can if X and y are shared swapped

variables in a concurrent setting y=2
Xx=1;
* Breaks illusion of “program order”! Z2=XTY;

SC cost 2: Causes too much cache
synchronization

Cost of SC not obvious with too simplified machine models:

Shared global memory

SC cost 2 Causes too much cache

Sy NC h 'O Btw, modern CPUs execute

instructions out-of-order
and in parallel (which can

also break illusion of IiStiC) mOdEI Of toda

program order)

t=cal cache Local cache Local cacke

Large but slow shared
memory Want to keep

computations local.
Communication with other

CPUs = overhead.

SharE!u Sivuur 11IClI llOry

Small but fast compared to
global shared memory. (In
real machines: multiple
layers of cache.)

Local cache

Problem with SC: If all
CPUs are to always see
value, must push all

writes through slow shared

_—

resources

Why not SC: Summary

* Not a complete list of reasons, just two examples!

* Anyhow, in summary:
SC too expensive in many situations

 Solution to mentioned problems:
Relax some guarantees offered by SC -2 we get weak memory models

* Weaker memory models (potentially) more performant, but more difficult
to program in

Outline

* What are memory models?
* Why weak memory models?

* Something about the Java memory model (as an example of a weak
memory model)

* Programming in the Java memory model (as an example of
programming in a weak memory model)

More context: Some more machine details

Programmer
Java programmers

program in Java
memory model

Just as Java “shields” us Java compiler developers must
from the machine’s implement Java memory model

assembly language, Java in the memory model of the
shields us from the underlying machine (different
machine’s memory machines have different memory
model models etc.)

Physical machine

The Java memory model

* Less convenient than SC, but implementable on modern machine
architectures without too much performance loss

* Opinion: Memory model part of language design, and different
coordinates in the design space have different tradeoffs. As with any
other language feature: No “right” answer.

Design tradeoff space

Even weaker memory models

Java memory model

Difficult to use =2

Sequential consistency

Performance =

SC for data-race-free programs

* A few (C-like) languages have converged to "sequential consistency for
data-race-free programs” memory models

e Java included in this family

* Reasoning principle: If there are no data races (under SC), we can
assume SC when reasoning about our program

* Important to remember definitions of data race and race conditions
(many people mix them up!)

Data races

Slight variation of previous definition you seen, to fit Java better:

Def. Two memory accesses are in a data race iff

* they access the same memory location simultaneously (they are interleaved next to each other),
 at least one access is a write,

* insufficient explicit synchronization used to protect the accesses

Def. A program is data-race-free iff no SC execution of the program contain a data race

“Slight variation”? Note that we quantify over all SC executions in the second definition.

Note that data-race-freedom is a "language-level” property!

Definition of data race surprisingly subtle

E.g., does this program contain any data races?

bool x = false, y = false;

tl {

if (x) y = true; $0\.
}
t2 {

if (y) x = true;

Race conditions

Definition from course slides:

Def. A race condition is a situation where the correctness of a
concurrent program depends on the specific execution

|H

Note that this is an "application-level” property!

l.e., for a given program p, to answer the question ”is p free from race
conditions?” we must have access to the specification of p.

Much confusion about these two definitions!

* Some people think benign data races is a thing
* We will not be of this opinion here

* For us, all data races are bad

* Note that some people simply mean (observable) non-determinism
when they say race condition

* With this definition of race conditions, not all race conditions are bugs

* For us, all race conditions are bugs (since the correctness of our program will
depend on how threads are scheduled when we have a race condition)

SC for data-race-free programs, again

e For Java programs, we have SC for programs without data races

* Reasoning principle in more detail:
1. Assume SC and make sure that there are no data races
2. If no data races, we can assume SC when reasoning about race conditions

 What about the semantics of programs with data races?
* Will not be considered here (except a little at the end of the talk!)

* In e.g. C++ data races result in undefined behavior (see C++ specification or
https://en.cppreference.com/w/cpp/language/memory model)

 Javais supposed to be a “safe language”, some guarantees (e.g. out-of-thin-air safety)

https://en.cppreference.com/w/cpp/language/memory_model

Outline

* What are memory models?
* Why weak memory models?

* Something about the Java memory model (as an example of a weak
memory model)

* Programming in the Java memory model (as an example of
programming in a weak memory model)

What does all this mean in practice?

* |.e: How does “weak memory models” affect my daily life as a
programmer?

* Answer: You must “annotate” your program more than with SC
* Sprinkle additional synchronization information on top of your program
 Variable qualifiers, synchronization mechanisms (e.g. locks), etc.

e Exactly what “annotate” means depends on language

* Essentially, you annotate which data/actions are shared and which
are not

. Simpler than initial example,
Simple example only one vaiable her

Does this program contain
» data races?

bool done = false;

* race conditions?

t1 {
done = true; * Data race = yes, done is accessed without
} synchronization and one of the accesses is a write
* Race condition = depends on the specification we are to
t2 { satisfy (what it means for the program to be correct)
if (done) print(33);
} * Race condition = even if we had a specification, we have

a data race so our reasoning principle does not apply!

Simple example

bool done = false;

tl {
done = true;

t2 {
if (done) print(33);

Wait a minute!

Are you telling me there’s a problem in this
program?

From a SC perspective, everything is fine!

No atomicity problems or anything like that... but
visibility problems!

Strictly speaking if this is a
problem depends on the

visibility guarantees you
make in your specification!

Simple example (fixed)

Solution: Annotate your program. E.g., in Java
volatile is considered synchronization.

volatile bool done = false;

t1 { , | |
Does this program contain Language

done = true; e data races? dependent, not

} * race conditions? the case in e.g.

C++

e Datarace =no, inJava volatile accesses are
t2 { considered synchronized

if (done) print(33);

} e Race condition = still depends on specification

Simple example (fixed)

volatile bool done = false; Example specification:

Spec = “If the program outputs something, it must

tl { output 33”

done = true;

—
[]

(In other words: Spec = “Output nothing or 33”)

Race conditions w.r.t. above specification?

t2 {
if (done) print(33);

No race conditions! As correct output does not
} depend on specific execution/ interleaving.

Simple example (fixed)

volatile bool done = false; Another example specification:

tl { * Spec = “The program outputs 33"
done = true;
} * Race conditions w.r.t. above specification?
t2 { * Yes, have race condition. Some
if (done) print(33); interleavings give us correct output, others
’ do not.

Similar example, with locks

lock lock = new lock(); Data races?
int id = ©;
We have a race! All accesses to the shared
t o iable d b hronized!
lock.lock(); variable done must be synchronized!
id++;
lock.unlock(); Here we have (again) atomicity, but not:
} visibility
t2 {
print(id);

¥

1d flag might exist as multiple copies...
lock lock = new lock();

if we would have locked
here, CPU would have
been forced to fetch latest

value from external source
CPU (t1) CPU (t2) instead of local cache

Might read “stale” value here

print(id);
}

Shared global memory

NOTE: Everything on this slide simplified, and makes unsound assumptions about JVM implementation details

Similar example, with locks (fixed)

lock lock = new lock();
int id = ©;

t1 {
lock.lock();
id++;
lock.unlock();

t2 {
lock.lock(); // new
print(id);
lock.unlock(); // new

This is how the program would look like with
proper annotations/synchronization

No data races in sight!

The Java memory model
in more detail

_ E java.Ut“.concurrent (Java SET x

C ® @ https://docs.oracle.com/en/java/javase/15/docs/af Bl < & % | Q Search mn O ® =

OVERVIEW MODULE CLASS USE TREE DEPRECATED INDEX HELP Java SE 15 & JDK 15

SEARCH: |0, Search X |

Module java.base

Package java.util.concurrent

Utility classes commonly useful in concurrent programming. This package includes a few small standardized extensible frameworks, as well as some
classes that provide useful functionality and are otherwise tedious or difficult to implement. Here are brief descriptions of the main components. See

also the java.util.concurrent.locks and java.util.concurrent.atomic packages.

Executors

Interfaces. Executor is a simple standardized interface for defining custom thread-like subsystems, including thread pools, asynchronous I/O, and
lightweight task frameworks. Depending on which concrete Executor class is being used, tasks may execute in a newly created thread, an existing
task-execution thread, or the thread calling execute, and may execute sequentially or concurrently. ExecutorService provides a more complete
asynchronous task execution framework. An ExecutorService manages queuing and scheduling of tasks, and allows controlled shutdown. The
ScheduledExecutorService subinterface and associated interfaces add support for delayed and periodic task execution. ExecutorServices provide
methods arranging asynchronous execution of any function expressed as Callable, the result-bearing analog of Runnable. A Future returns the
results of a function, allows determination of whether execution has completed, and provides a means to cancel execution. A RunnableFuture is a
Future that possesses a run method that upon execution, sets its results.

Implementations. Classes ThreadPoolExecutor and ScheduledThreadPoolExecutor provide tunable, flexible thread pools. The Executors class
provides factory methods for the most common kinds and configurations of Executors, as well as a few utility methods for using them. Other utilities
based on Executors include the concrete class FutureTask providing a common extensible implementation of Futures, and
ExecutorCompletionService, that assists in coordinating the processing of groups of asynchronous tasks.

Class ForkJoinPool provides an Executor primarily designed for processing instances of ForkJoinTask and its subclasses. These classes employ a
work-stealing scheduler that attains high throughput for tasks conforming to restrictions that often hold in computation-intensive parallel
processing.

Queues

/\f,i' - C ® ® & https://docs.oracle.com/en/java/javase/15/docs/af Bl e © v | Q Search N @O ®

OVERVIEW MODULE CLASS USE TREE DEPRECATED INDEX HELP

We can also say “memory

. thegl are guaranteed to traverse elements a |”

modifications subsequent to construction. cons | Ste N Cy mo d e
Memory Consistency Properties

Chapter 17 of The Java Language Specification defines the happens-hbefore relation on memory operations such as reads and writes of shared
variables. The results of a write by one thread are guaranteed to be visible to a read by another thread only if the write operation happens-before the

read operation. The synchronized and volatile constructs, as well as the Thread.start() and Thread. join() methods, can form happens-before
relationships. In particular:

e Each action in a thread happens-before every action in that thread that comes later in the program's order.

e An unlock (synchronized block or method exit) of a monitor happens-before every subsequent lock (synchronized block or method entry) of
that same monitor. And because the happens-before relation is transitive, all actions of a thread prior to unlocking happen-before all actions
subsequent to any thread locking that monitor.

e A write to a volatile field happens-before every subsequent read of that same field. Writes and reads of volatile fields have similar memory
consistency effects as entering and exiting monitors, but do not entail mutual exclusion locking.

e A call to start on a thread happens-before any action in the started thread.

e All actions in a thread happen-before any other thread successfully returns from a join on that thread.

The methods of all classes in java.util.concurrent and its subpackages extend these guarantees to higher-level synchronization. In particular:

e Actions in a thread prior to placing an object into any concurrent collection happen-before actions subsequent to the access or removal of that
element from the collection in another thread.

e Actions in a thread prior to the submission of a Runnable to an Executor happen-before its execution begins. Similarly for Callables submitted
to an ExecutorService.

e Actions taken by the asynchronous computation represented by a Future happen-before actions subsequent to the retrieval of the result via
Future.get() in another thread.

e Actions prior to "releasing" synchronizer methods such as Lock.unlock, Semaphore. release, and CountDownLatch.countDown happen-before
actions subsequent to a successful "acquiring" method such as Lock. lock, Semaphore.acquire, Condition.await, and CountDownLatch.await
on the same synchronizer object in another thread.

e For each pair of threads that successfully exchange objects via an Exchanger, actions prior to the exchange() in each thread happen-before
those subsequent to the corresponding exchange() in another thread.

e Actions prior to calling CyclicBarrier.await and Phaser.awaitAdvance (as well as its variants) happen-before actions performed by the
barrier action, and actions performed by the barrier action happen-before actions subsequent to a successful return from the corresponding
await in other threads.

Data races defined in terms of happens-before

From the Java language specification (v. 15):

Two accesses to (reads of or writes to) the same variable are said to be conflicting if at
least one of the accesses is a write.

[...]

When a program contains two conflicting accesses (§17.4.1) that are not ordered by a
happens-before relationship, it is said to contain a data race.

[...]

A program is correctly synchronized if and only if all sequentially consistent executions are
free of data races.

[...]

If a program is correctly synchronized, then all executions of the program will appear to be
sequentially consistent (§17.4.3).

Happens-before example

e Data race because t reads x
static int x = 1; without synchronization?

X = 2;
’ (Could argue read and write not

Thread t = new Thread(() -> overlapping in any SC execution.)
QSystem.out .println(x));

t.start(); * X Write happens-before x read,
because happens-before transitive

)= & ® & https://docs.oracle.com/en/java/javase/15/docs/af Bl e © v | Q Search N @0 ®

OVERVIEW MODULE CLASS USE TREE DEPRECATED INDEX HELP Java SE 15 & JDK 15

SEARCH: |, Search X

. thegr are guaranteed to traverse elements as they existed upon construction exactly once, and may (but are not guaranteed to) reflect any
modifications subsequent to construction.

Memory Consistency Properties

Chapter 17 of The Java Language Specification defines the happens-before relation on memory operations such as reads and writes of shared
variables. The results of a write by one thread are guaranteed to be visible to a read by another thread only if the write operation happens-before the

read operation. The synchronized and volatile constructs, as well as the Thread.start() and Thread. join() methods, can form happens-before
relationships. In particular:

e==PPFach action in a thread happens-before every action in that thread that comes later in the program's order.

e An unlock (synchronized block or method exit) of a monitor happens-before every subsequent lock (synchronized block or method entry) of
that same monitor. And because the happens-before relation is transitive, all actions of a thread prior to unlocking happen-before all actions
subsequent to any thread locking that monitor.

write to a volatile field happens-before every subsequent read of that same field. Writes and reads of volatile fields have similar memory
consistency effects as entering and exiting monitors, but do not entail mutual exclusion locking.

e A call to start on a thread happens-before any action in the started thread.

e All actions in a thread happen-before any other thread successfully returns from a join on that thread.

The methods of all classes in java.util.concurrent and its subpackages extend these guarantees to higher-level synchronization. In particular:

e Actions in a thread prior to placing an object into any concurrent collection happen-before actions subsequent to the access or removal of that
element from the collection in another thread.

e Actions in a thread prior to the submission of a Runnable to an Executor happen-before its execution begins. Similarly for Callables submitted
to an ExecutorService.

e Actions taken by the asynchronous computation represented by a Future happen-before actions subsequent to the retrieval of the result via
Future.get() in another thread.

e Actions prior to "releasing" synchronizer methods such as Lock.unlock, Semaphore. release, and CountDownLatch.countDown happen-before
actions subsequent to a successful "acquiring" method such as Lock. lock, Semaphore.acquire, Condition.await, and CountDownLatch.await
on the same synchronizer object in another thread.

e For each pair of threads that successfully exchange objects via an Exchanger, actions prior to the exchange() in each thread happen-before
those subsequent to the corresponding exchange() in another thread.

—.Actions prior to calling CyclicBarrier.await and Phaser.awaitAdvance (as well as its variants) happen-before actions performed by the
barrier action, and actions performed by the barrier action happen-before actions subsequent to a successful return from the corresponding
await in other threads.

Demo OutOfOrderTest.java again

BRIAN GOETZ

WITH Tim PEIERLS, JOsHUA BLOCH,
JOSEFPH BOWEBEER, DAVID HOLMES,
AND DOuUG LEA

LA

Reading suggestions

» See Java Concurrency in Practice (2006) if you want
more of this. The book presents simplified rules you can
follow to do concurrent programming in Java instead of
having to learn the details of the Java memory model.

* E.g., the book provides useful “safe publication
idioms”

* Also e.g.: Hans-J. Boehm, “Threads cannot be
implemented as a library” (2005).
(https://doi.org/10.1145/1065010.1065042)

* Also e.g.: Hans-J. Boehm and Sarita V. Adve, “You
don’t know jack about shared variables or memory
models” (2012).
(https://doi.org/10.1145/2076450.2076465)

https://doi.org/10.1145/1065010.1065042
https://doi.org/10.1145/2076450.2076465

Advice from JCP, p. 16

If multiple threads access the same mutable state variable without

appropriate synchronization, your program is broken. There are three

ways to fix it:
Don’t underestimate

. the two first
 Don’t share the state variable across threads; alternativest

 Make the state variable immutable; or
* Use synchronization whenever accessing the state variable.

Summary?

* Make sure to not have data races in your Java programs
* One way to think about all of this: Atomicity and visibility

* Visibility aspect new in weak memory models compared to SC!

It you only will remember one thing:

In concurrent programming in Java, not only do we have to consider
atomicity, we also must consider visibility!

visibility

visibility visibility

visibility

https://www.hboehm.info/misc_slides/10-pldi-adve-boehm-tutorial.pdf

